Abstract

In this work an ab initio analysis of the binuclear vanadium complex [V2O(bipy)4Cl2]2+ electronic structure is performed. The ground state was calculated to be a quintet, which means a ferromagnetic interaction between centers. The orbitals participating in exchange interaction according to ROHF+CI calculations are two molecular orbitals consisting of vanadium d-orbitals and two molecular orbitals with main contributions from p-orbitals of bipyridine ligands perpendicular to V-V axis, vanadium d- and p-orbitals and μ-oxygen p-orbital. Calculated energy values of the multielectronic states are placed in accordance with Lande rule. The value of magnetic moment at 293K calculated for the complex in vacuum taking into consideration the Boltzmann distribution and the energies of the excited states is 3.95BM which is in accordance with experimental value of 3.99BM (for complex in acetone).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.