Abstract

AbstractA combined density functional theory and Green's function procedure is used to calculate the electrical characteristics of a group of alkanethiols representing possible experimental settings. It is found that the current running through the molecule is the sum of the contributions from all molecular orbitals each presenting a barrier to electron transport equal to their energy difference from the Fermi level of the contacts. For the alkanethiols the location of these intrinsic barriers are at 0.78 eV (highest occupied molecular orbital [HOMO] and HOMO‐1), 1.99 eV (HOMO‐2 and HOMO‐3), 2.07 eV (LUMO and LUMO+1), and 2.67 eV (HOMO‐4). However, barriers obtained through fittings to known models do not bear any physical meaning at the molecular level, as they are sort of exponential average of the intrinsic barriers. We have also found that the exponential dependence of the current with the length of the alkane is practically independent of the contact nature, perhaps due to the large resistance of the alkanes. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.