Abstract

Trabeculectomy remains the ‘gold standard’ intraocular pressure (IOP)-lowering procedure for moderate-to-severe glaucoma; however, this approach is associated with the need for substantial post-operative management. Micro-invasive glaucoma surgery (MIGS) procedures aim to reduce the need for intra- and post-operative management and provide a less invasive means of lowering IOP. Generally, MIGS procedures are associated with only modest reductions in IOP and are targeted at patients with mild-to-moderate glaucoma, highlighting an unmet need for a less invasive treatment of advanced and refractory glaucoma. The PRESERFLO® MicroShunt (formerly known as InnFocus MicroShunt) is an 8.5 mm-long (outer diameter 350 μm; internal lumen diameter 70 μm) glaucoma drainage device made from a highly biocompatible, bioinert material called poly (styrene-block-isobutylene-block-styrene), or SIBS. The lumen size is sufficiently small that at normal aqueous flow hypotony is avoided, but large enough to avoid being blocked by sloughed cells or pigment. The MicroShunt achieves the desired pressure range in the eye by draining aqueous humor from the anterior chamber to a bleb formed under the conjunctiva and Tenon’s capsule. The device is implanted ab externo with intraoperative Mitomycin C via a minimally invasive (relative to incisional surgery) surgical procedure, enabling precise control of placement without the need for gonioscopy, suture tension control, or suture lysis. The implantation procedure can be performed in combination with cataract surgery or as a standalone procedure. The MicroShunt received Conformité Européenne (CE) marking in 2012 and is intended for the reduction of IOP in eyes of patients with primary open-angle glaucoma in which IOP remains uncontrolled while on maximum tolerated medical therapy and/or in which glaucoma progression warrants surgery. Three clinical studies assessing the long-term safety and efficacy of the MicroShunt have been completed; a Phase 3 multicenter, randomized clinical study comparing the MicroShunt to primary trabeculectomy is underway. In preliminary studies, the MicroShunt effectively reduced IOP and use of glaucoma medications up to 3 years after implantation, with an acceptable safety profile. This article summarizes current literature on the unique properties of the MicroShunt, the preliminary efficacy and safety findings, and discusses its potential use as an alternative to trabeculectomy for glaucoma surgery.

Highlights

  • BackgroundTrabeculectomy and tube shunt surgery remain the most commonly performed incisional intraocular pressure (IOP)-lowering glaucoma procedures for the treatment of moderate-to-severe and refractory glaucoma [1]

  • Development of the MicroShunt The development of SIBS and subsequently the MicroShunt was an iterative process that occurred over the course of 20 years [8, 14]

  • Suboptimal adherence to pharmacologic therapies [2] and substantial intra- and post-operative management associated with existing surgical approaches to glaucoma treatment [1, 3, 5, 30] highlight an unmet need in advanced and refractory glaucoma

Read more

Summary

Background

Trabeculectomy and tube shunt surgery remain the most commonly performed incisional intraocular pressure (IOP)-lowering glaucoma procedures for the treatment of moderate-to-severe and refractory glaucoma [1]. These surgical methods help to address the suboptimal adherence associated with pharmacologic therapies [2]. Most MIGS procedures developed to date have been associated with only modest reductions in IOP and are targeted at patients with mild-to-moderate glaucoma, highlighting an unmet need for minimally invasive treatment of moderate-tosevere and refractory glaucoma [5]. The MicroShunt is a subconjunctival glaucoma drainage device that facilitates aqueous humor outflow to a bleb, providing substantial IOP reductions [9]. This review will present a detailed overview of the development, material and design, surgical procedure, key published data from completed studies, and future perspectives on the MicroShunt

Main text
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call