Abstract

Pulmonary hypertension (PH) is a proliferative disease characterized by pulmonary arterial remodeling (PAR). SAM and SH3 domain containing 1 (SASH1) is a novel tumor suppressor gene whose biological function in PH is unclear. In this study, a hypoxia-induced pulmonary hypertension (HPH) rat model was constructed to explore the role of SASH1 in PAR. Histopathological changes in the lung tissue and hemodynamic alteration were detected in SASH1-knockdown rats through adeno-associated virus type-1 (AAV1) infection. In vitro, primary human pulmonary arterial smooth muscle cells (HPASMCs) were transfected with SASH1siRNA to investigate the effects of SASH1 on hypoxia-induced proliferation and migration. The molecular mechanisms associated with SASH1 were explored through knockdown and overexpression approaches. We found that SASH1 expression was significantly increased in rat pulmonary arteries and HPASMCs after hypoxia exposure. In vivo, silencing the SASH1 gene expression improved HPH in rats. The SASH1 downregulation inhibited proliferation and migration of hypoxia-induced HPASMCs. The protein expression of phospho-AKT (known as protein kinase B), proliferating cell nuclear antigen, and matrix metalloproteinase 9 (MMP9) in HPASMCs were increased after SASH1 overexpression, whereas these effects were inhibited by SASH1 knockdown. In conclusion, SASH1 downregulation improved hypoxia-induced PAR and PH. SASH1 may be a novel target for PH gene therapy in the era of precision medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call