Abstract

The power of adeno-associated viral (AAV)-directed evolution for identifying novel vector variants with improved properties is well established, as evidenced by numerous publications reporting novel AAV variants. However, most capsid variants reported to date have been identified using either replication-competent (RC) selection platforms or polymerase chain reaction-based capsid DNA recovery methods, which can bias the selection toward efficient replication or unproductive intracellular trafficking, respectively. A central objective of this study was to validate a functional transduction (FT)-based method for rapid identification of novel AAV variants based on AAV capsid mRNA expression in target cells. We performed a comparison of the FT platform with existing RC strategies. Based on the selection kinetics and function of novel capsids identified in an in vivo screen in a xenograft model of human hepatocytes, we identified the mRNA-based FT selection as the most optimal AAV selection method. Lastly, to gain insight into the mRNA-based selection mechanism driven by the native AAV-p40 promoter, we studied its activity in a range of in vitro and in vivo targets. We found AAV-p40 to be a ubiquitously active promoter that can be modified for cell-type-specific expression by incorporating binding sites for silencing transcription factors, allowing for cell-type-specific library selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.