Abstract
Loss of nigrostriatal projections by axonal degeneration is a key early event in Parkinson's disease (PD) pathophysiology, being accountable for the lack of dopamine in the nigrostriatal system and resulting in motor symptoms such as bradykinesia, rigidity, and tremor. Since autophagy is an important mechanism contributing to axonal degeneration, we aimed to evaluate the effects of competitive autophagy inhibition in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Adeno-associated viral vector (AAV)-mediated overexpression of a dominant-negative form of the unc-51 like autophagy-initiating kinase (ULK1.DN) in the substantia nigra was induced 3weeks before MPTP treatment. Analysis of motor behavior demonstrated a significant improvement of ULK1.DN expressing mice after MPTP treatment. Immunohistochemical analyses of dopaminergic nigral neurons and nigrostriatal projections revealed a significant protection from MPTP-induced neurotoxicity after ULK1.DN expression. Western blot analysis linked these findings to an activation of mTOR signaling. Taken together, our results indicate that expression of ULK1.DN can attenuate MPTP-induced axonal neurodegeneration, suggesting that ULK1 could be a promising novel target in the treatment of PD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.