Abstract

Urea cycle defects presenting in the neonatal period with hyperammonaemia are associated with high morbidity and mortality, and necessitate liver transplantation for long-term management. Gene therapy is therefore an attractive possibility, with vectors based on adeno-associated virus (rAAV) currently showing exciting promise in liver-targeted clinical trials in adults. Successful use of rAAV vectors in infants, however, is more challenging as episomal rAAV genomes will be lost from proliferating hepatocytes during liver growth, leaving stable transgene expression dependent on the subset of vector genomes that undergo genomic integration. To explore this challenge, we exploited the partially ornithine transcarbamylase (OTC)-deficient spf(ash) mouse model and small hairpin RNA-mediated knockdown of residual endogenous OTC enzyme activity in adult mice that had received neonatal treatment with an OTC-encoding rAAV. This leaves mice reliant on vector-encoded OTC activity that has persisted from the newborn period. Despite stable transduction in approximately 8% of hepatocytes and residual vector-encoded OTC activity of up to 33% of wild-type, well above endogenous spf(ash) levels (5-7%), mice were not protected from hyperammonaemia. These data show that the distribution of OTC activity within the liver is critical and that rAAV vector re-delivery after early neonatal treatment is likely to be necessary for stable control of hyperammonaemia into adulthood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.