Abstract

Post Forming Electro Plastic Effect (PFEPE) has been proposed as a promising technology for mitigating forming forces and addressing springback challenges in the metal forming industry. However, several research gaps remain unaddressed for the industrialization of this technology. Firstly, there is a lack of experimental validation regarding the impact of stress reduction on springback. Secondly, the potential effect of the skin-effect on the current metrics of stress reduction needs to be evaluated. Additionally, a post-forming electrically assisted elastoplastic material model is necessary for further technology development in stamping processes. This study tackles these challenges by utilizing AA5754H22 as a reference material and integrating a comprehensive experimental campaign with finite element numerical models and empirical material model developments. Our findings confirm that PFEPE facilitates a significant reduction in springback, achieving approximately a 100% reduction. Although the skin-effect introduces non-uniform current flux density distribution, its impact at the macroscopic level is negligible for the studied thin samples. While the numerical results of springback fails to accurately replicate experimental results, the developed material model aligns well with experimental trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.