Abstract

Two stable modifications of A3V2(PO4)3 (A = Na or Li) were synthesized by citric acid assisted modified sol–gel synthesis. The obtained samples were phase pure Li3V2(PO4)3 and Na3V2(PO4)3 materials embedded in a carbon matrix. The samples were tested as half cells against lithium or sodium metal. Both samples delivered about 90 mAh g−1 at a C/10 cycling rate. The change of vanadium oxidation state and changes in the local environment of redox center for both materials were probed by in-situ X-ray absorption spectroscopy. Oxidation state of vanadium was determined by energy shift of the absorption edge. The reversible change of valence from trivalent to tetravalent oxidation state was determined in the potential window used in our experiments. Small reversible changes in the interatomic distances due to the relaxation of the structure in the process of alkali metal extraction and insertion were observed. Local environment (vanadium–oxygen bond distances) after 1st cycle were found to be the same as in the starting material. Both structures have been found very rigid without significant changes during alkali metal extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.