Abstract

ABSTRACT We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A3COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z ∼ 3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $\rm {\mu Jy\, beam}^{-1}$ (1σ). The detection rate is highly mass dependent, decreasing drastically below log (M*/M⊙) = 10.5. The detected galaxies show that the IRX–β relationship of massive (log M*/M⊙ > 10) main-sequence galaxies at z = 2.5–4.0 is consistent with that of local galaxies, while starbursts are generally offset by $\sim 0.5\, {\rm dex}$ to larger IRX values. At the low-mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX–M* relation at $\rm {log\, ({\it M}_{\ast }/\mathrm{M}_{\odot })\gt 9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at log M*/M⊙ < 10. However, our results are consistent with earlier measurements at z ∼ 5.5, indicating a potential redshift evolution between z ∼ 2 and z ∼ 6. Deeper observations targeting low-mass galaxies will be required to confirm this finding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.