Abstract
Abstract The defect chemistry of different ordered intermetallic compounds with the A3B stoichiometry was investigated. Three groups were distinguished according to their crystal structure: L12 compounds (Ni3Al, Ni3Ga, Pt3Ga, Pt3In), D019 compounds (Ti3Al), and D03 compounds (Fe3Al, Ni3Sb). Statistical-thermodynamic models were derived based on a Wagner-Schottky approach, and the calculated activity curves (thermodynamic activity vs. composition) were compared with experimental activity data. In this way, we attempted to obtain at least estimated values for the energies of formation of the different types of point defects present in the corresponding compound, both as configurational defects (which are responsible for nonstoichiometry) and as thermal defects. In the majority of cases, thermodynamic activities had to be determined experimentally in the present study, using either an emf method with a solid electrolyte (Ni3Ga, Pt3Ga, Pt3In, Fe3Al) or a Knudsen cell-mass spectrometric method (Ni3Sb).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.