Abstract

Accurate remote sensing estimation of inland water quality parameters (WQPs) plays a crucial role in guiding water resource management. To achieve this, researchers have explored various data-driven approaches utilizing machine learning (ML) techniques. However, there are two major challenges in WQPs estimation for inland waters. Firstly, current data-driven approaches focus on building a unified estimation model for an entire study area, which underestimates the complex dynamics of water constituents and optical properties. Secondly, ML models, particularly neural networks, require extensive hyperparameter tuning and are not user-friendly for researchers lacking relevant background and experience. In this paper, we propose an innovative method called adaptive and automated data-driven water quality parameter estimation (A2DWQPE) to address both challenges. Our method operates under the assumption that water bodies with similar spectral characteristics should share the same WQP estimation model. A2DWQPE is composed of three phases. Firstly, water types are automatedly classified by unsupervised hierarchical clustering according to spectral similarity. Then, optimal Deep Neural Network (DNN) models for estimating WQPs from multi-spectral satellite images are customized for each water type utilizing Bayesian optimization (BO). Finally, the target WQP is estimated based on the type-specific estimates and degree of membership of each water type. To evaluate the effectiveness of A2DWQPE, we applied it to estimate Secchi disk depth (SDD) in Lake Erie with in situ measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) images. The results demonstrate that A2DWQPE outperforms the traditional approaches of developing a unified model for the entire study area. A2DWQPE achieved high accuracy with coefficient of determination (R2) over 0.72 and root mean square error (RMSE) below 1.4 m. Our method also outperforms the methods that applied Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) instead of BO, and several traditional ML algorithms. We firmly believe that A2DWQPE holds great potential for accurate inland water quality estimation and will contribute significantly to various applications in water quality monitoring and pollution prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.