Abstract
Abstract Background Human Norovirus infection is the most common viral cause of gastroenteritis globally and the second most reported viral infection in Canada after the common cold. Most infections are acute, symptomatic, and rapidly cleared but some cases persist asymptomatically or induce post-infectious irritable bowel syndrome. Despite the global burden of these infections, no vaccine to prevent disease exists nor is the mechanism for persistence understood. MNV-CW3 and MNV-CR6 are murine noroviruses which demonstrate distinct biological behaviors that correlate with differential quantity and quality of antiviral CD8+ T cell responses. MNV-CW3 causes acute systemic infections initiated in the small intestine and cleared by day 8 due to a robust antiviral CD8+ T cell response. In contrast, MNV-CR6 causes chronic infections localized to the colonic intestinal epithelium and induces fewer antiviral CD8+ T cells with reduced effector molecule expression. Aims This research interrogates the mechanisms underlying strain-specific differential antiviral CD8+ T cell responses. Methods At days 3, 4, 5 and 8 post-infection, the phenotype and quantity of adoptively transferred MNV specific CD8+ T cells in the spleen, mesenteric lymph node (MLN), and the small and large intestine are analyzed by flow cytometry. Concurrently, immunofluorescent microscopy is used to determine whether CD8+ T cells are broadly disseminated throughout the intestines or localize in acute clusters of antiviral response. Combining these complementary techniques provides novel insight into mechanisms governing intestinal antiviral T cell responses. Results Activated MNV-specific CD8 T cells first accumulate in the MLN following oral infection with both MNV-CW3 and CR6, suggesting this is the site of immune activation. Supporting this hypothesis, preliminary data indicates that preventing T cell egress from activation sites by treatment with the S1PR1 agonist FTY720 leads to an enrichment of activated CD8+ T cells in the MLN following CW3 infection. Notably, the earliest stages of CD8+ T cell activation to CR6 infection is delayed compared to that elicited by CW3. Furthermore, at the peak of CD8+ T cell expansion (day 8 post-infection), CR6-elicited CD8+ T cells preferentially develop into short-lived effector populations rather than memory precursor populations. Conclusions These data reveal previously unknown differences in early events in CD8+ T cell activation following infection with two highly related viral strains that correlate with long-lasting effects on T cell differentiation and function. We are currently investigating the hypothesis that MNV-CW3 and CR6 may induce activation of distinct populations of, or pathways in, APC populations that would drive these differences. These results may have broad impacts on our understanding of how non-latent, chronic viral infections persist within a host. Funding Agencies CIHR
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Canadian Association of Gastroenterology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.