Abstract

A1 adenosine receptors efficiently modulate the excitatory synaptic transmission in hippocampus. Here we report that in addition to previously known modulatory action on the synaptic efficacy, A1 adenosine receptors are also capable of regulating the relative contribution of N-methyl-D-aspartate receptor-mediated component of the excitatory postsynaptic current in CA3-CA1 excitatory synapses, in the rat. When applied externally, a selective A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine, increases not only the amplitude of excitatory postsynaptic current but also the relative contribution of the N-methyl-D-aspartate receptor-mediated component of postsynaptic current recorded by in situ voltage clamp. This effect develops only at increased external Ca2+ concentration and also depends on the external Ca2+/Mg2+ ratio. The increased ratio of N-methyl-D-aspartate/non-N-methyl-D-aspartate components of excitatory postsynaptic current remains at a new level after the removal of 8-cyclopentyl-1,3-dimethylxanthine, even though the amplitude of excitatory postsynaptic current returns close to control value. These results indicate the existence of a mechanism that preferentially enhances the N-methyl-D-aspartate component of excitatory postsynaptic current when the A1 adenosine receptors are blocked and imprints the newly acquired ratio of corresponding excitatory postsynaptic current components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.