Abstract

1. A1 adenosine receptors were investigated by radioligand binding and functional studies in slices and particulate preparations from guinea-pig cerebral cortex. 2. Binding of the adenosine receptor antagonist radioligand, 8-cyclopentyl-[3H]-1,3-dipropylxanthine (DPCPX) to guinea-pig cerebral cortical membranes exhibited high density (1410 +/- 241 fmol mg-1 protein) and high affinity (Kd 3.8 +/- 0.3 nM). 3. [3H]-DPCPX binding to guinea-pig cerebral cortical membranes was displaced in a monophasic manner by adenosine receptor antagonists with the rank order of affinity (Ki values, nM): DPCPX (6) < xanthine amine congener (XAC, 153) < PD 115,199 (308). 4. Agonist displacement of [3H]-DPCPX binding was biphasic and exhibited the following rank order at the low affinity site (Ki values): 2-chloro-N6-cyclopentyl-adenosine (CCPA, 513 nM) = N6-R-phenylisopropyladenosine (R-PIA, 526 nM) = N6-cyclopentyladenosine (CPA, 532 nM) < 2-chloroadenosine (2CA, 3.2 microM) = 5'-N-ethylcarboxamidoadenosine (NECA, 4.6 microM) < N6-S-phenylisopropyladenosine (S-PIA, 19.9 microM). 5. In cerebral cortical slices, [3H]-DPCPX binding was displaced by antagonists and agonists in an apparently monophasic manner with the rank order of affinity (Ki values, nM): DPCPX (14) < XAC (45) < R-PIA (266) < PD 115,199 (666) < S-PIA (21000). 6. Cyclic AMP accumulation stimulated by 30 microM forskolin in guinea-pig cerebral cortical slices was inhibited by R-PIA, CCPA and CPA up to 1 microM in a concentration-dependent fashion with IC50 values of 14, 18, and 22 nM, respectively. All three analogues inhibited the forskolin response to a similar extent (82-93% inhibition). NECA, S-PTA and 2CA failed to inhibit the forskolin response, but rather enhanced the accumulation of cyclic AMP at concentrations of 100 nM or greater, presumably through activation of A2b adenosine receptors coupled to stimulation of cyclic AMP accumulation in guinea-pig cerebral cortical slices.7. The inhibition of forskolin-stimulated cyclic AMP accumulation by CPA was antagonized with the rank order of affinity (Ki values, nM): DPCPX (6)<XAC (52)<PD 115,199 (505).8 Xanthine-based antagonists inhibited the adenosine receptor augmentation of histamine-induced phosphoinositide turnover in guinea-pig cerebral cortical slices with the rank order of affinity (Ki, nM):DPCPX (12)=XAC (17)<PD 155,199 (640).9 In summary, we observe a good correlation between antagonist affinity at A1 receptors defined by radioligand binding, inhibition of cyclic AMP generation or augmentation of histamine-evoked phosphoinositide turnover in guinea-pig cerebral cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call