Abstract
One of the major limiting factors for efficient photoelectrochemical water oxidation is the fast recombination kinetics of photogenerated charge carriers. Herein, we propose a model system that utilizes ZnIn2 S4 and hierarchical VS2 microflowers for efficient charge separation through a Z-scheme pathway, without the need for an electron mediator. An impressive 18-fold increase in photocurrent was observed for ZnIn2 S4 -VS2 compared to ZnIn2 S4 alone. The charge-transfer dynamics in the composite were found to follow a Z-scheme pathway, which resulted in decreased charge recombination and greater accumulation of the surface charge. Furthermore, slow kinetics of the surface reaction in the ZnIn2 S4 -VS2 composite correlated to an increased surface-charge capacitance. This feature of the composite material facilitated partial storage of the photogenerated charge carriers (e- /h+ ) under illumination and dark-current conditions, thus storing and utilizing solar energy more efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.