Abstract

The complexity class ZPP NP[1] (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. • For starters, we provide a new characterization: ZPP NP[1] equals the restriction of BPP NP[1] where the algorithm is only allowed to err when it forgoes the opportunity to make an NP oracle query. • Using the above characterization, we prove a query-to-communication lifting theorem , which translates any ZPP NP[1] decision tree lower bound for a function f into a ZPP NP[1] communication lower bound for a two-party version of f . • As an application, we use the above lifting theorem to prove that the ZPP NP[1] communication lower bound technique introduced by Göös, Pitassi, and Watson (ICALP 2016) is not tight. We also provide a “primal” characterization of this lower bound technique as a complexity class.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call