Abstract

Accurate and continuous pressure signal detection without external power supply is a key technology to realize the miniaturization of wearable electronic equipment, the internet of things, and artificial intelligence. However, it is difficult to be achieved by using current sensor technologies. Here, a new one-body strategy, i.e., zinc-ion battery pressure (ZIB-P) sensor technology, which designs the rechargeable solid-state ZIB itself as a flexible pressure sensor is reported. In the device, an isolation layer is introduced into the sandwich configuration solid-state battery to realize the change of device internal resistance by pressure during the transformation of the mechanical signal to the electrical signal. This battery pressure sensor possesses good flexibility, fast response/recovery time (76.0/88.0ms), stable long-term response, excellent cycle stability (100 000 times), and wide pressure detection range (2.0 to 3.68 × 105 Pa). Especially, the excellent charge-discharge performance in the ZIB-P sensor endows it with the real-time detection ability of human vital signs (pulse, limb movement, etc.) and ultrahigh stability without degradation even under 100 000 times pressure stimulation. The ZIB-P sensor strategy provides a new solution for the future development of miniaturized wearable electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.