Abstract

Halogen redox couples offer several advantages for energy storage such as low cost, high solubility in water, and high redox potential. However, the operational complexity of storing halogens at the oxidation state via liquid-phase media hampers their widespread application in energy-storage devices. Herein, an aqueous zinc-dual-halogen battery system taking the advantages of redox flow batteries (inherent scalability) and intercalation chemistry (high capacity) is designed and fabricated. To enhance specific energy, the designed cell exploits both bromine and chlorine as the cathode redox couples that are present as halozinc complexes in a newly developed molten hydrate electrolyte, which is distinctive to the conventional zinc-bromine batteries. Benefiting from the reversible uptake of halogens at the graphite cathode, exclusive reliance on earth-abundant elements, and membrane-free and possible flow-through configuration, the proposed battery can potentially realize high-performance massive electric energy storage at a reasonable cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.