Abstract

Consumers in smart grids are expected to engage demand-response programs by two-way communication. This makes smart grids vulnerable to cyber attacks. In this paper, we study the false pricing attacks and model the interaction between attackers and defenders using a zero-sum Markov game, where neither player has full knowledge of the game model. A multi-agent reinforcement learning method is used to solve the Markov game and find the Nash Equilibrium policies for both players. An application to a simple radial power distribution system is worked out. The results show that the proposed algorithm can help the players find mixed strategies to maximize their long-term return.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.