Abstract

Contour error due to the dynamic characteristics of feed system has a great influence on machining accuracy, in high-speed machining. In this paper, a new path precompensation method is proposed using zero phase error tracking control algorithm to improve the contouring accuracy for multiaxis machining with large feed rates. In this method, the outputs are predicted with the identified position-loop models of feed systems, and a contour error calculator is designed to calculate contour error in each sample instance using the predicted output and reference input. In order to compensate the contour error resulting from the dynamic tracking error of feed systems, the contour error vector is decomposed orthogonally and the compensation components for individual axis are calculated using zero phase error tracking control algorithm. Simulations showed that contour errors can be significantly improved with small compensation using the new path precompensation method for linear, circular, and parabola contours. Experimental results showed that the new method can reduce contour error significantly and achieve a better compensation compared with zero phase error tracking control and cross-coupled path pre-compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.