Abstract
High indoor humidity/temperature pose serious public health threat and hinder industrial productivity, thus adversely impairing the wellness and economy of the entire society. Traditional air conditioning systems for dehumidification and cooling involve significant energy consumption and have accelerated thegreenhouse effect. Here, this work demonstrates an asymmetric bilayer cellulose-based fabric that enables solar-driven continuous indoor dehumidification, transpiration-driven power generation, and passive radiative cooling using the same textile without any energy input. The multimode fabric (ABMTF) consists of a cellulose moisture absorption-evaporation layer (ADF) and a cellulose acetate (CA) radiation layer. The ABMTF exhibits a high moisture absorption capacity and water evaporation rate, which quickly reduces the indoor relative humidity (RH) to a comfortable level (40-60% RH) under 1 sun illumination. The evaporation-driven continuous capillary flow generates a maximum open-circuit voltage (Voc ) of 0.82V, and a power density (P) up to 1.13 µW cm-3 . When a CA layer with high solar reflection and mid-infrared (mid-IR) emissivity faces outward, it realizes subambient cooling of ≈12 °C with average cooling power of ≈106W m-2 at midday under radiation of 900W m-2 . This work brings a new perspective to develop the next-generation, high performance environmentally friendly materials for sustainable moisture/thermal management and self-powered applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.