Abstract
AbstractThe synthesis and characterization is reported of (C9NH20)2SnBr4, a novel organic metal halide hybrid with a zero‐dimensional (0D) structure, in which individual seesaw‐shaped tin (II) bromide anions (SnBr42−) are co‐crystallized with 1‐butyl‐1‐methylpyrrolidinium cations (C9NH20+). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep‐red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. The unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals to exhibit the intrinsic properties of individual SnBr42− species, and 2) the seesaw structure enabling a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.