Abstract
We consider Zador's (1963, 1966, 1982) asymptotic formula for the distortion-rate function for a variable-rate vector quantizer in the high-rate case. This formula involves the differential entropy of the source, the rate of the quantizer in bits per sample, and a coefficient G which depends on the geometry of the quantizer but is independent of the source. We give an explicit formula for G in the case when the quantizing regions form a periodic tiling of n-dimensional space, in terms of the volumes and second moments of the Voronoi cells. As an application we show, extending earlier work of Kashyap and Neuhoff (see ibid, vol.47, p.2538-2383, 2001) that even a variable-rate three-dimensional quantizer based on the "A15" structure is still inferior to a quantizer based on the body-centered cubic lattice. We also determine the smallest covering radius of such a structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.