Abstract

AbstractUp to now, there are few reports on the yield behavior of Ni-based superalloy during plastic deformation. However, an accurate yield stress model is significant for simulating the plastic forming process by cellular automaton or finite element methods. Therefore, the yield behavior of a solution-treated Ni-based superalloy is studied by hot compression tests. In order to evaluate yield stresses from the measured flow stress curves, the yield process is analyzed in terms of dislocation theory. Then, yield stresses at different deformation temperatures and strain rates are clearly determined. The experimental results show that the yield stresses are highly sensitive to deformation temperature and strain rate. The determined yield stress almost linearly increases with the increase of the logarithm of strain rate or the reciprocal of deformation temperature. A yield stress model is developed to correlate the yield behavior of the studied solution-treated Ni-based superalloy with deformation temperature, strain rate, and strengthening effect of alloying elements. The developed model can well describe the yield behavior of the studied solution-treated Ni-based superalloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.