Abstract

In this paper, a yield criterion for hybrid asymmetric metal sandwich structure is proposed including the combined effects of geometrical and physical asymmetries. Taking account of the interaction of bending and axial stretching and using the yield criterion, we obtain an analytical solution for large deflections of fully clamped hybrid asymmetric sandwich beam transversely loaded by a flat punch at mid-span. Moreover, finite element analysis is performed and good agreement is achieved between numerical results and analytical predictions. It is shown that the well-designed hybrid asymmetric sandwich beam may have higher load-carrying capacity than the conventional geometrically or physically asymmetric counterpart in large deflections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call