Abstract

This work investigates the relation between shear stress and plastic yield considering that a crystal can only deform in a limited set of directions. The shear stress in arbitrary directions is mapped for some cases showing relevant differences. Yield loci based on mean shear stress are constructed. The Tresca yield criterion can be improved by averaging the shear stress over directions near the direction of maximum shear stress. Yield criteria based on averaging over crystallographic direction show a clear influence of the actual orientation of these direction, notably in case of few crystallographic directions. The general finding is that the higher the isotropy of a material, the lower the plane strain factor. The shape of the yield loci is comparable to those derived by the Hershey criterion with exponents lower than 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.