Abstract

Members of the ATP binding cassette (ABC) protein superfamily transport a variety of substances across biological membranes, including drugs, ions, and peptides. The yeast cadmium factor (YCF1) gene from Saccharomyces cerevisiae is required for cadmium resistance and encodes a 1,515 amino acid protein with extensive homology to both the human multidrug resistance-associated protein (MRP1) and the cystic fibrosis transmembrane conductance regulator (hCFTR). S. cerevisiae cells harboring a deletion of the YCF1 gene are hypersensitive to cadmium compared with wild type cells. Mutagenesis experiments demonstrate that conserved amino acid residues, functionally critical in hCFTR, play a vital role in YCF1-mediated cadmium resistance. Mutagenesis of phenylalanine 713 in the YCF1 nucleotide binding fold 1, which correlates with the delta F508 mutation found in the most common form of cystic fibrosis, completely abolished YCF1 function in cadmium detoxification. Furthermore, substitution of a serine to alanine residue in a potential protein kinase A phosphorylation site in a central region of YCF1, which displays sequence similarity to the central regulatory domain of hCFTR, also rendered YCF1 nonfunctional. These results suggest that YCF1 is composed of modular domains found in human proteins which function in drug and ion transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.