Abstract
Light exposure is a vital regulator of physiology and behavior in humans. However, monitoring of light exposure is not included in current wearable Internet of Things (IoT) devices, and only recently have international standards defined [Formula: see text] -optic equivalent daylight illuminance (EDI) measures for how the eye responds to light. This article reports a wearable light sensor node that can be incorporated into the IoT to provide monitoring of EDI exposure in real-world settings. We present the system design, electronic performance testing, and accuracy of EDI measurements when compared to a calibrated spectral source. This includes consideration of the directional response of the sensor, and a comparison of performance when placed on different parts of the body, and a demonstration of practical use over 7 days. Our device operates for 3.5 days between charges, with a sampling period of 30 s. It has 10 channels of measurement, over the range 415-910 nm, balancing accuracy and cost considerations. Measured [Formula: see text]-opic EDI results for 13 devices show a mean absolute error of less than 0.07 log lx, and a minimum between device correlation of 0.99. These findings demonstrate that accurate light sensing is feasible, including at wrist worn locations. We provide an experimental platform for use in future investigations in real-world light exposure monitoring and IoT-based lighting control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.