Abstract

Fatigue driving is the main cause of traffic accidents. Analysis of electroencephalogram (EEG) signals has attracted wide attention for identifying fatigue driving. With the development of the Internet of Vehicles (IoV), we hope to establish an EEG-based IoV traffic management system to improve traffic safety. In the proposed system, real-time diagnosis is a significant factor, and improvement of the detection speed is our main concern. EEG signals generate a large amount of spatially oriented data over a relatively short duration; hence, their dimension needs to be reduced effectively before being analysed. We proposes a feature reduction method, based on a novel weighted principal component analysis (WPCA) algorithm for EEG signals. First, the EEG features are extracted by an autoregressive (AR) model. Second, we calculate the influence of different features on the classified performance of fatigue state. The accuracy reduction values of different features are normalised as the weights of the features. Finally, these weights are assigned to the WPCA to reduce the EEG features. To verify the effectiveness of the algorithm, we carried out a simulated driving experiment involving eight participants. For comparison, power spectral density and differential entropy models were also introduced to extract EEG features. Support Vector Machine was adopted as a classifier to establish a fatigue driving classification experiment. The experimental results show that the WPCA method can effectively reduce the feature dimension of different EEG feature extraction methods, speed up calculations, and achieve a much higher classification accuracy of fatigue driving.

Highlights

  • The Internet of Things (IoT) is a methodology that can connect objects through the Internet to work together to achieve new goals [1]

  • We propose a feature reduction method based on a novel weighted principal component analysis (WPCA) algorithm for EEG signals

  • The experimental results showed that the 4th order AR model could extract the features of EEG signals excellently, which was the basis for accurate classification in real time

Read more

Summary

Introduction

The Internet of Things (IoT) is a methodology that can connect objects through the Internet to work together to achieve new goals [1]. We propose a feature reduction method based on a novel WPCA algorithm for EEG signals. The autoregressive (AR) model is introduced to extract the features of the EEG signals recorded by drivers during a simulated driving experiment.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.