Abstract

Active control of the surface-enhanced Raman scattering (SERS) enhancement shows great potential for realizing smart detection of different molecules. However, conventional methods usually involve time-consuming structural design or a sophisticated fabrication process. Herein, we reported an electrically tunable field effect transistor (FET) comprising a WOx/MoOx hybrid as the SERS active layer. In the experiment, WOx/MoOx hybrids were first prepared by mixing different molar ratios of WOx and MoOx oxides. Then, R6G molecules were used as Raman reporters, showing that the intensity of the SERS signal observed on the most optimal hybrids (molar ratio = 1 : 3) could be increased by two times as high as that observed on a single WOx or MoOx based substrate, which was ascribed to enhanced charge transfer efficiency by the constructed nano-heterojunction between the WOx and MoOx oxides. Thereafter, a back-gate FET was fabricated on a SiO2/Si substrate, and the most optimal WOx/MoOx hybrid was deposited as the gate channel and the SERS active layer. After that, a series of gate biases (from -15 V to 15 V) were implemented to actively tune the SERS performance of the FET. It is evident that the SERS EF can be further tuned from 2.39 × 107 (-15 V) to 6.55 × 107 (+10 V), which is ∼7.4/4.1 times higher than that observed on the pure WOx device (8.81 × 106) or pure MoOx (1.61 × 107) device, respectively. Finally, the mechanism behind the electrical tuning strategy was investigated. It is revealed that a positive voltage would bend the conduction band down, which increased the electron density near the Fermi level. Consequently, it triggered the resonance charge transfer and significantly improved the SERS performance. In contrast, a negative gate voltage attracted the holes to the Fermi level, which deferred the charge transfer process, and caused the reduction of the SERS enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.