Abstract
We show that bulk operators lying between the outermost extremal surface and the asymptotic boundary admit a simple boundary reconstruction in the classical limit. This is the converse of the Python’s lunch conjecture, which proposes that operators with support between the minimal and outermost (quantum) extremal surfaces—e.g. the interior Hawking partners—are highly complex. Our procedure for reconstructing this ‘simple wedge’ is based on the HKLL construction, but uses causal bulk propagation of perturbed boundary conditions on Lorentzian timefolds to expand the causal wedge as far as the outermost extremal surface. As a corollary, we establish the Simple Entropy proposal for the holographic dual of the area of a marginally trapped surface as well as a similar holographic dual for the outermost extremal surface. We find that the simple wedge is dual to a particular coarse-grained CFT state, obtained via averaging over all possible Python’s lunches. An efficient quantum circuit converts this coarse-grained state into a ‘simple state’ that is indistinguishable in finite time from a state with a local modular Hamiltonian. Under certain circumstances, the simple state modular Hamiltonian generates an exactly local flow; we interpret this result as a holographic dual of black hole uniqueness.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.