Abstract

The information explosion the world has witnessed in the last two decades has forced businesses to adopt a data-driven culture for them to be competitive. These data-driven businesses have access to countless sources of information, and face the challenge of making sense of overwhelming amounts of data in a efficient and reliable manner, which implies the execution of read-intensive operations. In the context of this challenge, a framework for the dynamic read-optimization of large dimensional datasets has been designed, and on top of it a workload-driven mechanism for automatic materialized view selection and creation has been developed. This paper presents an extensive description of this mechanism, along with a proof-of-concept implementation of it and its corresponding performance evaluation. Results show that the proposed mechanism is able to derive a limited but comprehensive set of views leading to a drop in query latency ranging from 80% to 99.99% at the expense of 13% of the disk space used by the base dataset. This way, the devised mechanism enables speeding up query execution by building materialized views that match the actual demand of query workloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.