Abstract

Interconnection networks for multicore processors are traditionally designed to serve a diversity of workloads. However, different workloads or even different execution phases of the same workload may benefit from different interconnect configurations. In this paper, we first motivate the need for workload-adaptive interconnection networks. Subsequently, we describe an interconnection network framework based on reconfigurable switches for use in medium-scale (up to 32 cores) shared memory multicore processors. Our cost-effective reconfigurable interconnection network is implemented on a traditional shared bus interconnect with snoopy-based coherence, and it enables improved multicore performance. The proposed interconnect architecture distributes the cores of the processor into clusters with reconfigurable logic between clusters to support workload-adaptive policies for inter-cluster communication. Our interconnection scheme is complemented by interconnect-aware scheduling and additional interconnect optimizations which help boost the performance of multiprogramming and multithreaded workloads. We provide experimental results that show that the overall throughput of multiprogramming workloads (consisting of two and four programs) can be improved by up to 60% with our configurable bus architecture. Similar gains can be achieved also for multithreaded applications as shown by further experiments. Finally, we present the performance sensitivity of the proposed interconnect architecture on shared memory bandwidth availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.