Abstract
BackgroundAssay for Transposase-Accessible Chromatin (ATAC)-cap-seq is a high-throughput sequencing method that combines ATAC-seq with targeted nucleic acid enrichment of precipitated DNA fragments. There are increased analytical difficulties arising from working with a set of regions of interest that may be small in number and biologically dependent. Common statistical pipelines for RNA sequencing might be assumed to apply but can give misleading results on ATAC-cap-seq data. A tool is needed to allow a nonspecialist user to quickly and easily summarize data and apply sensible and effective normalization and analysis.ResultsWe developed atacR to allow a user to easily analyze their ATAC enrichment experiment. It provides comprehensive summary functions and diagnostic plots for studying enriched tag abundance. Application of between-sample normalization is made straightforward. Functions for normalizing based on user-defined control regions, whole library size, and regions selected from the least variable regions in a dataset are provided. Three methods for detecting differential abundance of tags from enriched methods are provided, including bootstrap t, Bayes factor, and a wrapped version of the standard exact test in the edgeR package. We compared the precision, recall, and F-score of each detection method on resampled datasets at varying replicate, significance threshold, and genes changed and found that the Bayes factor method had the greatest overall detection power, though edgeR was slightly stronger in simulations with lower numbers of genes changed.ConclusionsOur package allows a nonspecialist user to easily and effectively apply methods appropriate to the analysis of ATAC-cap-seq in a reproducible manner. The package is implemented in pure R and is fully interoperable with common workflows in Bioconductor.
Highlights
Assay for Transposase-Accessible Chromatin (ATAC)-cap-seq is a high-throughput sequencing method that combines ATAC-seq with targeted nucleic acid enrichment of precipitated DNA fragment
The ATAC library preparation method is essentially the same as the original ATAC-seq paper (Buenrostro 2015), we have described in more detail the ATAC-cap-seq process that elaborates on this
The atacR work ow is based around three major steps - data loading and inspection, identi cation of best targets to use for normalisation and detection of di erential count estimates
Summary
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript. Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.