Abstract

I describe the wonderful compactification of loop groups. These compactifications are obtained by adding normal-crossing boundary divisors to the group LG of loops in a reductive group G (or more accurately, to the semi-direct product C×⋉LG) in a manner equivariant for the left and right C×⋉LG-actions. The analogue for a torus group T is the theory of toric varieties; for an adjoint group G, this is the wonderful compactification of De Concini and Procesi. The loop group analogue is suggested by work of Faltings in relation to the compactification of moduli of G-bundles over nodal curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.