Abstract

Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level unmeasured confounding. We focus on one particular ML-based causal inference method based on the targeted maximum likelihood estimation (TMLE) with an ensemble learner called SuperLearner. Through our simulation studies, we observe that training TMLE within groups of similar clusters helps remove bias from cluster-level unmeasured confounders. Also, using within-group propensity scores estimated from fixed effects logistic regression increases the robustness of the proposed within-group TMLE method. Even if the propensity scores are partially misspecified, the within-group TMLE still produces robust ATE estimates due to double robustness with flexible modeling, unlike parametric-based inverse propensity weighting methods. We demonstrate our proposed methods and conduct sensitivity analyses against the number of groups and individual-level unmeasured confounding to evaluate the effect of taking an eighth-grade algebra course on math achievement in the Early Childhood Longitudinal Study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.