Abstract

With the escalation of global warming, the shrinkage of mountain glaciers has accelerated globally, the water volume from glaciers has changed, and relative disasters have increased in intensity and frequency (for example, ice avalanches, surging glaciers, and glacial lake outburst floods). However, the wireless monitoring of glacial movements cannot currently achieve omnidirectional, high-precision, real-time results, since there are some technical bottlenecks. Based on wireless networks and sensor application technologies, this study designed a wireless monitoring system for measuring the internal parameters of mountain glaciers, such as temperature, pressure, humidity, and power voltage, and for wirelessly transmitting real-time measurement data. The system consists of two parts, with a glacier internal monitoring unit as one part and a glacier surface base station as the second part. The former wirelessly transmits the monitoring data to the latter, and the latter processes the received data and then uploads the data to a cloud data platform via 4G or satellite signals. The wireless system can avoid cable constraints and transmission failures due to breaking cables. The system can provide more accurate field-monitoring data for simulating glacier movements and further offers an early warning system for glacial disasters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call