Abstract

Full-scale structural measurements of new and existing railway catenary systems are becoming increasingly important due to continually increasing train speeds and the resulting consequences. Higher speeds lead to increased loads and greater structural dynamic responses, necessitating that both static and dynamic regulations be fulfilled. Sampling directly on railway catenary sections is necessary to assess their structural behaviour. The results can both be analysed directly and be used for validating and/or improving numerical models, which in turn can be used to explore the structural response at higher speeds. This case study presents and explores a newly developed wireless sensor system that includes multiple sensors that can be mounted arbitrarily on any of the wires in a catenary system. All sensors synchronously sample accelerations and rotational velocities over a range of up to 1400m. This paper shows the results of mounting the developed sensor system and sampling the data of an existing railway catenary section at the Hovin station in Norway. Sampling was performed from both self-excited tests and 140 scheduled train passages. The outputs have been analysed to show that the data can be used to successfully assess railway catenary structural response components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call