Abstract

Field measurement of wind characteristics is of great significance for the wind engineering community. High-frequency anemometers such as ultrasonic anemometers are widely used to obtain the high-frequency fluctuating wind speed time history. However, conventional instrumentation systems may suffer from low efficiency, non-real time transmission and higher maintenance cost, and thus are not very appropriate in the field measurement of strong winds in remote areas such as mountain valleys. In order to improve the field measurement performance in those remote areas, a wireless high-frequency anemometer instrumentation system for field measurement has been developed. In this paper, the architecture of the proposed instrumentation system, and measured data transmission and treatment will be presented firstly. Then a comparison among existing instrumentation systems and the proposed one is made. It shows that the newly-developed system has considerable advantages. Furthermore, the application of this system to the bridge site located in the mountain valley is discussed. Finally, typical samples of measured data from this area are presented. It can be expected that the proposed system has a great application potential in the wind field measurement for remote areas such as the mountainous or island or coastal area, and hazardous structures such as ultra-voltage transmission tower, due to its real-time transmission, low cost and no manual collection of data and convenience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.