Abstract

This paper presents a mobile, easy-to-maintain wireless electroencephalograph (EEG) system designed for work with children in a school environment. This EEG data acquisition platform is a small-sized, battery-powered system with a high sampling rate that is scalable to different channel numbers. The system was validated in a study of live z-score neurofeedback training for quantitative EEG (zNF-qEEG) for typical-reading children and those with developmental dyslexia (DD). This system reads and controls real-time neurofeedback (zNF) signals, synchronizing visual stimuli (low spatial frequency (LSF) illusions) with the alpha/theta (z-α/θ) score neural oscillations. The NF sessions were applied during discrimination of LSF illusions with different contrasts. Visual feedback was provided with color cues to remodulate neural activity in children with DD and their cognitive abilities. The combined zNF-qEEG and training with different visual magnocellular and parvocellular tasks (VTs) compensated for the deficits in the temporal areas affecting the occipitotemporal pathway more in the left-hemispheric ventral brain areas of the post-training children with dyslexia in the low-contrast LSF illusion and dorsal dysfunction in the high-contrast LSF illusion. The better α/θ scores for postD in the temporoparietal and middle occipital regions can be associated with an improvement in special frequency processing, while the better scores in the precentral and parietal cortices were due to an advancement in the temporal processing of the illusion. The improvements in the reading speeds were twice as high after 4 months of qEEG z-NF-VT training, with three times fewer omitted words and errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.