Abstract

Wireless technologies combined with advanced computing are changing industrial communications. Industrial wireless networks can improve the monitoring and the control of the entire system by jointly exploiting massively interacting communication and distributed computing paradigms. In this paper, we develop a wireless cloud platform for supporting critical data publishing and distributed sensing of the surrounding environment. The cloud system is designed as a self-contained network that interacts with devices exploiting the time synchronized channel hopping protocol (TSCH), supported by WirelessHART (IEC 62591). The cloud platform augments industry-standard networking functions as it handles the delivery (or publishing) of latency and throughput-critical data by implementing a cooperative-multihop forwarding scheme. In addition, it supports distributed sensing functions through consensus-based algorithms. Experimental activities are presented to show the feasibility of the approach in two real industrial plant sites representative of typical indoor and outdoor environments. Validation of cooperative forwarding schemes shows substantial improvements compared with standard industrial solutions. Distributed sensing functions are developed to enable the autonomous identification of recurring cochannel interference patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.