Abstract
Wind energy has proven its viability by the emergence of countless wind turbines around the world which greatly contribute to the increased electrical generating capacity of wind farm operators. These infrastructures are usually deployed in not easily accessible areas; therefore, maintenance routines should be based on a well-guided decision so as to minimize cost. To aid operators prior to the maintenance process, a condition monitoring system should be able to accurately reflect the actual state of the wind turbine and its major components in order to execute specific preventive measures using as little resources as possible. In this paper, we propose a fault detection approach which combines cluster analysis and frequent pattern mining to accurately reflect the deteriorating condition of a wind turbine and to indicate the components that need attention. Using SCADA data, we extracted operational status patterns and developed a rule repository for monitoring wind turbine systems. Results show that the proposed scheme is able to detect the deteriorating condition of a wind turbine as well as to explicitly identify faulty components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KSII Transactions on Internet and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.