Abstract

This paper describes wind-tunnel experiments on the flow around single and multiple porous windbreaks (height H), sheltering a model plant canopy (height H/3). The mean wind is normal to the windbreaks, which span the width of the wind tunnel. The incident turbulent flow simulates the adiabatic atmospheric surface layer. Five configurations are examined: single breaks of three solidities (low, medium, high; solidity = 1 - porosity), and medium-solidity multiple breaks of streamwise spacing 12H and 6H. The experimental emphases are on the interactions of the windbreak flow with the underlying plant canopy; the effects of solidity; the differences in shelter between single and multiple windbreaks; and the scaling properties of the flow. Principal results are: (1) the "quiet zones" behind each windbreak are smaller in multiple than single arrays, because of the higher turbulence level in the very rough-wall internal boundary layer which develops over the multiple arrays. Nevertheless, the overall shelter effectiveness is higher for multiple arrays than single windbreaks because of the "nonlocal shelter" induced by the array as a whole. (2) The flow approaching the windbreak decelerates above the canopy but accelerates within the canopy, particularly when the windbreak solidity is high. (3) A strong mixing layer forms just downwind of the top of each windbreak, showing some of the turbulence and scaling properties of the classical mixing layer formed between uniform, coflowing streams. (4) No dramatic increase in turbulence levels in the canopy is evident at the point where the deepening mixing layer contacts the canopy (around x/H = 3) but the characteristic inflection in the canopy wind profile is eliminated at this point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.