Abstract

Although moderate attention has been paid to the response of the aeolian mass transport rate to wind gusts, it is still unclear how the particle size and volumetric concentration affect this relation. Very little is known about the response time of the particle speed, and specifically, how the sensor scale and elevation affect measurements of this variable. The present study addresses this knowledge gap through a series of wind tunnel experiments in which a gusty wind was generated by programming the fan motor to adjust to a randomly selected rpm every 10s. Beds consisting of either medium or coarse sand were investigated through synchronous, co-located measurements of the local wind speed and particle speed/count rate obtained via a customized laser Doppler anemometry (LDA) system. The vertically integrated sand transport rate (Q) and the wind speed in the freestream were quantified using a passive sand trap and pitot tube, respectively. The results of the experiments indicate that the response of the aeolian transport system to wind gusts is generally faster in terms of the particle speed than the mass transport rate, while the degree of correlation is found to vary with the sensor elevation, as well as with the particle size and volumetric concentration. In essence, the coupling within the transport system is demonstrated to be strongly scale dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.