Abstract

In the current work we experimentally explored yawed wind turbine wake impacts on downwind wind turbine performances and wind loads. The lab-scale wind turbine model with a rotor diameter ( D) of 0.442 m and a height of 1 m (=2.26 D) was installed in a closed-circuit boundary layer wind tunnel (test section: 15 m long × 3.6 m wide × 2.0 m high) of the Research Institute for Applied Mechanics (RIAM) of Kyushu University. Power performance tests were initially conducted with a single rotor in isolation in order to characterize a rotor’s power output in stand-alone conditions. A detailed comparison of the tests revealed that the power output decreased rapidly as the yaw angle (γ) increased. It is presumed that the power output decrease in yawed cases is mainly due to the decrease in the effective rotor area and the change in the angle of the incoming wind flow with respect to the wind turbine blade. Next, using two wind turbine models aligned with the dominant inflow direction, the merging wakes behaviors caused by three different lateral separation distances were tested: (a) Case 1 ( y = 0), (b) Case 2 ( y = 0.5 D), and (c) Case 3 ( y = 1 D). Here, the separation distance between the two wind turbine models was fixed at 6 D in all cases. Extremely large power output deficits of 46%–76% were seen in the Case 1 configuration. This is mainly due to the significant wake velocity deficits induced by the upwind wind turbine model. In the Case 2 configuration with γ values of 20° and 30°, a significant increase in the power output of the downwind wind turbines was observed. Similar to Case 1 configuration, these results are considered to be mainly due to the upwind turbine-induced wake velocity deficits and wake deflection. Finally, in the Case 3 configuration, no significant difference was found in all of the results, and the tendency was almost the same. We show that the wake velocity deficits induced by the upwind wind turbine model had almost no effect on the power output of the downwind wind turbine model. We evaluated the total power output of the two turbines. As a result, in the Case 2 configuration with 20° yaw angle, the total power output of the two wind turbine models was the highest due to the increase in the power output of the downwind wind turbine model. In order to investigate the main cause of the significant increase in the power output of the downwind wind turbine model at 20° and 30° yaw angles in the Case 2 configuration, we measured the lateral wind speed distribution at the 6 D position on the downwind side of the upwind wind turbine model by using the ultrasonic anemometer. As a results, it was clarified that the peak of the wake velocity deficits induced by the upwind wind turbine model is clearly shifted away from the downwind turbine such that it experiences a smaller deficit due to wake steering. Also, with wake steering the upwind turbine-induced wake velocity deficits may be smaller due to the reduction in rotor area. Finally, it is extremely important to understand the wind load acting on the downwind wind turbine model operating within the wake region induced by the upwind yawed wind turbine model when the maximum power output is generated. It can be seen that as the yaw angle of the upwind wind turbine model increased, the power output generated by the downwind wind turbine model and the streamwise wind load acting on it also increased. However, it was also clarified that the streamwise wind load acting on the downwind wind turbine model in this situation did not exceed the stand-alone value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call