Abstract
Roof curvature is used to increase ground vehicle camber and enhance rear–body boat–tailing to reduce aerodynamic drag. Little aerodynamic data is published for light goods vehicles (LGVs) which account for a significant proportion of annual UK licensed vehicle miles. This paper details scale wind tunnel measurements at Re = 1.6 × 106 of a generic LGV utilising interchangeable roof panels to investigate the effects of curved roof profile on aerodynamic drag at simulated crosswinds between −6° and 16°. Optimum magnitudes of roof profile depth and axial location are suggested and the limited dataset indicates that increasing roof curvature is effective in reducing drag over a large yaw range, compared to a flat roof profile. This is primarily due to increased base pressure, possibly from enhanced mixing of longitudinal vortices shed from the rear–body upper side edges and increased turbulent mixing in the near–wake due to the increased effective boat–tail angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.