Abstract
Large-scale multibeam phased array systems suffer from interbeam interference (IBI) that should be canceled either in the analog or digital domain. In wideband systems such as fifth generation (5G), interference rejection over a wide bandwidth is challenging to achieve, not only due to nonidealities of the receiver chain but also due to the properties of the radio channel. This article presents a scalable IBI cancellation (IBIC) scheme at intermediate frequency (IF) using an IF receiver (IF-RX) chip. The IF-RX provides the flexibility of not just interference rejection between the subarrays but also wideband signal combining over multiple subarrays. It also provides wideband filtering before the analog-to-digital converter (ADC) to support 5G channel bandwidths of up to 800 MHz, high linearity, and low noise figure. A calibration method is proposed to find the cancellation coefficients for the IF-RX in measurements. Furthermore, a simplified over-the-air (OTA) IBIC model for analyzing rejection bandwidth limitations is presented. Interference rejection performance is demonstrated through the OTA measurements using 5G new radio (5G NR) signals. In the OTA measurements, 34–37-dB rejection was achieved for 50–100-MHz signals, while error vector magnitude (EVM) requirements of the 5G standards were met with good margins. Finally, the interference rejection over <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4\ttimes 100$</tex-math> </inline-formula> MHz carrier aggregated 5G NR waveform was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.