Abstract

Background: Pediatric epileptic encephalopathy and severe neurological disorders comprise a group of heterogenous diseases. We used whole-exome sequencing (WES) to identify genetic defects in pediatric patients. Methods: Patients with refractory seizures using ≥2 antiepileptic drugs (AEDs) receiving one AED and having neurodevelopmental regression or having severe neurological or neuromuscular disorders with unidentified causes were enrolled, of which 54 patients fulfilled the inclusion criteria, were enrolled, and underwent WES. Results: Genetic diagnoses were confirmed in 24 patients. In the seizure group, KCNQ2, SCN1A, TBCID 24, GRIN1, IRF2BPL, MECP2, OSGEP, PACS1, PIGA, PPP1CB, SMARCA4, SUOX, SZT2, UBE3A, 16p13.11 microdeletion, [4p16.3p16.1(68,345–7,739,782)X1, 17q25.1q25.3(73,608,322–81,041,938)X3], and LAMA2 were identified. In the nonseizure group, SCN2A, SPTBN2, DMD, and FBN1 were identified. Ten novel mutations were identified. The recurrent genes included SCN1A, KCNQ2, and TBCID24. Male pediatric patients had a significantly higher (57% vs. 29%; p < 0.05, odds ratio = 3.18) yield than their female counterparts. Seventeen genes were identified from the seizure groups, of which 82% were rare genetic etiologies for childhood seizure and did not appear recurrently in the case series. Conclusions: Wide genetic variation was identified for severe childhood seizures by WES. WES had a high yield, particularly in male infantile patients.

Highlights

  • In children, genetic disorders cause severe neurological disease, congenital malformation, inborn errors of metabolism, and developmental epileptic encephalopathy (DEE)

  • DEEs refer to a group of ictal and interictal epileptiform anomalies associated with severe cognitive and behavioral impairments according to the classification and terminology criteria of the International League against Epilepsy (ILAE) [1,2]

  • Of 54 patients with severe neurological disorders, we identified variants corresponding with the disease in 24 patients

Read more

Summary

Introduction

Genetic disorders cause severe neurological disease, congenital malformation, inborn errors of metabolism, and developmental epileptic encephalopathy (DEE). Increasing evidence suggests that genetics play a pivotal role in pediatric DEEs and severe neurological disorders [3,4,5]. Pediatric epileptic encephalopathy and severe neurological disorders comprise a group of heterogenous diseases. We used whole-exome sequencing (WES) to identify genetic defects in pediatric patients. Methods: Patients with refractory seizures using ≥2 antiepileptic drugs (AEDs) receiving one AED and having neurodevelopmental regression or having severe neurological or neuromuscular disorders with unidentified causes were enrolled, of which 54 patients fulfilled the inclusion criteria, were enrolled, and underwent WES. Seventeen genes were identified from the seizure groups, of which 82% were rare genetic etiologies for childhood seizure and did not appear recurrently in the case series. Conclusions: Wide genetic variation was identified for severe childhood seizures by WES. WES had a high yield, in male infantile patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.