Abstract
A Wide Range Robust PSS Design Based on Power System Pole-Placement Using Linear Matrix InequalityIn this paper, a new method for robust PSS design based on the power system pole placement is presented. In this stabilizer, a feedback gain matrix is used as a controller. The controller design is proposed by formulating the problem of robust stability in a Linear Matrix Inequality (LMI) form. Then, the feedback gain matrix is designed based on the desired region of the closed loop system poles. This stabilizer shifts the poles of the power system in different operational points into the desired regions ins-plane, such that the response of the power system will have proper damping ratio in all the operational points. The uncertainties of the power system parameters are also considered in this robust technique. Finally, in order to show the advantages of the proposed method in comparison with conventional PSS, some simulation results are provided for a power system case study in different operational points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.